Dimensionality Reduction by Sparsiication in a Local-features Representation of Human Faces

نویسنده

  • Penio S. Penev
چکیده

Low-dimensional representations are key to solving problems in high-level vision, such as face compression and recognition. On the basis of a multi-dimensional Gaussian model, Principal Component Analysis (PCA) has been applied to establish that a global representation with dimensionality 400 suuciently encloses the space of human faces. Local Feature Analysis (LFA) has been proposed to achieve the same low dimensionality, but with a topographic set of lters that resemble the local features of human faces. Here we study a sparsiication strategy in the context of LFA and show that it gives a substantially reduced estimate of the dimension-ality of face space, 200. We nd that LFA is a more accurate, non-Gaussian, parameterization of the true probability density of images of human faces, because it is able to account additionally for the partial local symmetries of this ensemble of natural objects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybridization of Facial Features and Use of Multi Modal Information for 3D Face Recognition

Despite of achieving good performance in controlled environment, the conventional 3D face recognition systems still encounter problems in handling the large variations in lighting conditions, facial expression and head pose The humans use the hybrid approach to recognize faces and therefore in this proposed method the human face recognition ability is incorporated by combining global and local ...

متن کامل

Spectral Regression dimension reduction for multiple features facial image retrieval

Face retrieval has received much attention in recent years. This paper comparatively studied five feature description methods for face representation, including Local Binary Pattern (LBP), Gabor feature, Gray Level Co-occurrence Matrices (GLCM), Pyramid Histogram of Oriented Gradient (PHOG) and Curvelet Transform (CT). The problem of large dimensionalities of the extracted features was addresse...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Diagnosis of Diabetes Using an Intelligent Approach Based on Bi-Level Dimensionality Reduction and Classification Algorithms

Objective: Diabetes is one of the most common metabolic diseases. Earlier diagnosis of diabetes and treatment of hyperglycemia and related metabolic abnormalities is of vital importance. Diagnosis of diabetes via proper interpretation of the diabetes data is an important classification problem. Classification systems help the clinicians to predict the risk factors that cause the diabetes or pre...

متن کامل

A Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters

Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999